
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

THE ISLAMIC STATE BATTLE PLAN: PRESS
RELEASE NATURAL LANGUAGE PROCESSING

by

James R. Friedlein

June 2016

Thesis Advisor: Lyn R. Whitaker
Second Reader: Craig A. Whiteside

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2016

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
THE ISLAMIC STATE BATTLE PLAN: PRESS RELEASE NATURAL
LANGUAGE PROCESSING

5. FUNDING NUMBERS

6. AUTHOR(S) James R Friedlein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The purpose of this study is to develop methods to accelerate and enhance the analysis of Islamic
State Movement text documents. We analyze a unique database collected by Dr. Craig Whiteside, which is
comprised of nearly 3,000 open-source translated press releases from 2003–2014. Using Natural Language
Processing tools, the text data is aggregated into a corpus and processed based on document term structure
and frequency. In order to reduce analyst workload, we validate Whiteside’s manual analysis and construct
cross-validated generalized linear models to automatically classify documents into one of seven types. A
cascade classification model outperforms all other models with a mean cross-validated misclassification
rate of 5.71 percent. Islamic State Movement operational summaries are classified as type “Celebrate.” We
develop a layered algorithm based on regular expressions and location searches to extract critical
information from each attack event and display the details on a map using a web-based interactive R
Shiny application. With the ability to automatically classify Islamic State Movement text documents and
visually interact with the data contained within those classified as type “Celebrate,” analysts and decision
makers are able to process and understand large amounts of text data more quickly and effectively.

14. SUBJECT TERMS
Islamic State Movement, Islamic State of Iraq, ISIS, Islamic State, Natural Language
Processing, text mining, corpus, generalized linear model, cascade, R Shiny, leaflet,
data visualization

15. NUMBER OF
PAGES

83

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

THE ISLAMIC STATE BATTLE PLAN: PRESS RELEASE NATURAL
LANGUAGE PROCESSING

James R. Friedlein
Major, United States Marine Corps

B.S., United States Naval Academy, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2016

Approved by: Lyn R. Whitaker, Ph.D.
Thesis Advisor

Craig A. Whiteside, Ph.D.
Second Reader

Patricia A. Jacobs, Ph.D.
Chair, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The purpose of this study is to develop methods to accelerate and enhance the

analysis of Islamic State Movement text documents. We analyze a unique database

collected by Dr. Craig Whiteside, which is comprised of nearly 3,000 open-source

translated press releases from 2003–2014. Using Natural Language Processing tools, the

text data is aggregated into a corpus and processed based on document term structure and

frequency. In order to reduce analyst workload, we validate Whiteside’s manual analysis

and construct cross-validated generalized linear models to automatically classify

documents into one of seven types. A cascade classification model outperforms all other

models with a mean cross-validated misclassification rate of 5.71 percent. Islamic State

Movement operational summaries are classified as type “Celebrate.” We develop a

layered algorithm based on regular expressions and location searches to extract critical

information from each attack event and display the details on a map using a web-based

interactive R Shiny application. With the ability to automatically classify Islamic State

Movement text documents and visually interact with the data contained within those

classified as type “Celebrate,” analysts and decision makers are able to process and

understand large amounts of text data more quickly and effectively.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION AND BACKGROUND ..1
A. INTRODUCTION..1
B. TERRORISM DATABASE METHODOLOGIES2

1. Global Terrorism Database ..2
2. Iraq Body Count Database ..4
3. Database Comparisons Illustrated ...5
4. Islamic State Movement Database ...8

C. OUTLINE ...10

II. DATA PROCESSING ...11
A. ISLAMIC STATE MOVEMENT DATABASE11
B. DATA IMPORT ...11
C. TEXT PREPROCESSING ..13
D. DOCUMENT TERM MATRIX ...16

1. N-Gram Tokenizer ...16
2. Term Frequency-Inverse Document Frequency

Weighting ..16
3. Sparsity ...18

E. SUPERVISED MODEL PREPARATION ..18
1. The Goal ..19
2. Response Variable Reconciliation ..20

III. CLASSIFICATION MODEL ...23
A. MODELING APPROACH ...23
B. CROSS-VALIDATED GLMNET ..23

1. Model 1: Weak Classifier ..25
2. Model 2: Strong Classifier...27

C. CASCADE MODEL ..28

IV. DATA VISUALIZATION ...33
A. VISUALIZATION TOOL ..33
B. DATA EXTRACTION ..33

1. Events ..35
2. Dates ..35
3. Times ...36
4. Location ..36

C. GEONAME LOCATION DATABASE ...39

 viii

D. LOCATION MATCHING ..39
E. R SHINY VISUALIZATION TOOL ...41

V. SUMMARY AND FUTURE WORK ...45
A. SUMMARY ..45
B. FUTURE WORK ...45

1. Collect a Test Set ..46
2. Web-Scraping Functionality ...46
3. Classify by Type of Attack ..46
4. Comprehensive R Shiny Tool ...46
5. Improve Location Identification with Learning47
6. Updating and Improving the Location Database47
7. Editing the Data Tab Data Frame ..47
8. Expanding to New Media Types ...47

APPENDIX: R FUNCTIONS AND SCRIPTS..49
A. DOCX TO TEXT CONVERSION ...49
B. PDF TO TEXT CONVERSION ...50
C. REMOVEMOSTPUNCTUATION FUNCTION50
D. TM_MAP ORDERED PREPROCESSING ON CORPUS51
E. FUNCTIONS TO EXTRACT EVENTS ..51
F. FIND DATE FUNCTION ...51
G. FIND MISC FUNCTION ..52
H. HAMMING LOCATION SEARCH R SCRIPT53

LIST OF REFERENCES ..55

INITIAL DISTRIBUTION LIST ...59

 ix

LIST OF FIGURES

Figure 1. Number of Terrorist Attacks Recorded in the Global
Terrorism Database. Source: Pape et al. (2014). ...4

Figure 2. Global Terrorism Database Search Results for Al-Qaeda and the
Islamic State of Iraq from 2003–2009. Source: GTD (2016).7

Figure 3. Iraq Body Count Database Search Results for Perpetrator Groups
Likely to Contain Islamic State of Iraq Members, 2003–2009
Source: IBC (2016). ...8

Figure 4. Whiteside’s Breakdown of Islamic State Movement Database by
Message Type. Source: Whiteside (2014) ...19

Figure 5. Islamic State Data Set Document Breakdown based on
Reconciliation with Whiteside’s Coded Research20

Figure 6. Diagram of Production Process for Classification Model 1.25

Figure 7. Model 1 Boxplots of the Estimated Probability that a Document is of
Type “Celebrate” by Actual Document Type ..27

Figure 8. Diagram of Production Process for Classification Model 2.27

Figure 9. Model 2 Boxplots of the Estimated Probability that a Document is of
type “Celebrate” by Actual Document Type. ..28

Figure 10. Face Detection Cascade Model Schematic. Source: Viola and Jones
(2004). ..30

Figure 11. Diagram of Production Process for Cascade Classification Model.31

Figure 12. Approximate Document Type Distribution Upon Reaching the
Fourth Level of the Cascade Classification Model.31

Figure 13. “Celebrate” Document Common Format with Numbered Events
Adapted from Hanin Network Forums (2014)...34

Figure 14. Main Tab for R Shiny Interactive Tool ...42

Figure 15. Map Tab for R Shiny Interactive Tool ..43

Figure 16. Data Tab for R Shiny Interactive Tool ..44

Figure 17. Islamic State Output by Media Source: Winter (2015)48

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Islamic State Database Breakdown by Document Format11

Table 2. Islamic State Document Type Classifications as Coded by Whiteside21

Table 3. Model 1 Classification Table–Actual Versus Predicted26

Table 4. Model 2 Classification Table—Actual Versus Predicted28

Table 5. Cascade Model Classification Table—Actual Versus Predicted32

Table 6. Prioritized Location Search Categories, Patterns, and Functions38

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CETIS Center for Terrorism and Intelligence Studies

DTM Document Term Matrix

GLM Generalized Linear Model

GTD Global Terrorism Database

HPC High Performance Computing

IBC Iraq Body Count

IDF Inverse Document Frequency

IQR Interquartile Range

ISI Islamic State of Iraq

ISVG Institute for the Study of Violent Groups

NATO North Atlantic Treaty Organization

NLP Natural Language Processing

PCorpus Permanent Corpus

PDF Portable Document Format

PGIS Pinkerton Global Intelligence Services

SMART System for the Mechanical Analysis and Retrieval of Text

START Study of Terrorism and Responses to Terrorism

TDM Term Document Matrix

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

tm text mining (R package)

VCorpus Volatile Corpus

WGS84 World Geodetic System 1984

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Analysts and researchers today are struggling to process the large amounts of

information that flows across the myriad of global domains. In the world of text data,

manual analytic methods cannot keep pace with the amount of text being published. In an

effort to alleviate some of the burden of manual approaches, we apply Natural Language

Processing (NLP) tools to a unique database of text documents collected by Whiteside

(2014). His collection includes nearly 3,000 open-source press releases and captured

documents authored by the Islamic State Movement’s official media outlets and

translated from Arabic to English. Compared to other terrorism databases, Whiteside’s

collection methodology limits the scope of the database and avoids coding conflicts and

standardization issues common in larger terrorism databases. In this study, we develop

two primary analytic tools that attempt to alleviate the burdens of manual analysis. With

the ability to automatically classify documents and visualize large amounts of text data,

analysts and decision makers will develop greater understanding of their data at a more

rapid pace.

Whiteside’s collection of 2,926 documents is stored as files, one per document, in

Portable Document Format (PDF) and compressed Microsoft Word “.docx” formats.

These documents are converted into text files and combined to form a corpus, an object

that contains the text and metadata (such as the name of the original file) for all 2,926

documents. The corpus is used in two ways. First, it is used to classify documents into

one of seven types, and then to visualize the locations of terrorist attacks described in

those documents. Each of these tasks requires a different approach to processing the

corpus.

For the classification task, the text of the corpus is preprocessed in a deliberate

order so that attributes such as capitalization and the presence of whitespace, punctuation,

and commonly used words do not adversely influence our analysis. “Terms,” which

roughly corresponds to words or sequences of words, are captured in a Document Term

Matrix (DTM) (Feinerer and Hornik 2015). A DTM has one row per document and one

column per term. Its entries are the number of times a term appears in a document. We

 xvi

construct two DTMs; for the initial DTM, used to construct our “Weak Classifier,” a term

is defined as a single word. For the second DTM, used to construct our “Strong

Classifier,” we include all single words as terms, as well as two- and three-word

sequences (often called bi-grams and tri-grams, respectively). To limit the size of the

second DTM, the number of terms is reduced by removing those terms that appear in less

than 1.0 percent of the documents. We further modify the DTM by replacing frequencies

with a set of weights called Term Frequency-Inverse Document Frequency (TF-IDF)

commonly used in information retrieval and NLP (Weiss, Indurkhya, and Zhang 2010).

This set of weights is used to measure the importance of a term in the document. Terms

that appear often in a document are weighted more, but terms that appear in most

documents (e.g., “attack,” “kill”) and hence have little predictive power carry less weight.

In order to build supervised models that use document text to classify a document

into one of seven types, we leverage Whiteside’s manual classification of each document

type as our response variable. Of the seven types of documents over 85 percent are type

“Celebrate.” After building multiple cross-validated logistic regression models using both

types of DTMs, we determine that a cascade model provides the best performance

(Friedman, Hastie, and Tibshirani 2010). The cascade model, similar to that used by

Viola and Jones (2004), uses a sequence of our “Weak Classifiers” to classify documents

as “Celebrate” or “Not Celebrate.” At each step, those documents classified as

“Celebrate” are removed. Documents are classified as “Celebrate” if their estimated

“Celebrate” probability (p̂) is greater than a certain threshold. This threshold is set high

to guard against removing “Not Celebrate” documents. After three applications of

binomial classification, the distribution of document types becomes relatively uniform

and a “Strong Classifier” is used in a final cross-validated multinomial classification

model to classify documents into one of the seven types. This cascade model outperforms

all other models with a mean misclassification rate of 5.71 percent. Figure 1 shows the

production process for creating the cascade model.

 xvii

Figure 1: Diagram of Production Process for Cascade Classification Model

The documents classified as type “Celebrate” are Islamic State Movement

operational summaries filled with information, to include dates, times, locations, and

descriptive account of attacks. These documents provide an opportunity to develop an

interactive tool to help analysts and decision makers visualize aspects of this rich source

of information. Within the R interface, regular expressions are used to extract individual

attacks or events from each “Celebrate” document and assign an event to its own row in a

data set (R Core Team 2015). Functions leveraging regular expressions also extract and

categorize event dates, times, and locations. Because locations are text spelled in

different ways and can be names of streets, neighborhoods, areas, or other categories of

location, location extraction is the most challenging task. We construct an algorithm that

prioritizes five search functions based on the fidelity of the location category and whether

the location is in a reference database that maps location names to geographical

coordinates. The reference database is the GeoNames database, an open-source

unclassified geographical database with approximately 32,000 locations (GeoNames

2016). In addition to the five location search categories, we augment the process by

 xviii

conducting a search for every primary and alternate name from the GeoNames database

within all event text strings. We utilize the Naval Postgraduate School (NPS) Hamming

supercomputer cluster to execute this 44-hour search in less than 2 hours and 45 minutes.

We are able to provide location names for 91.2 percent of the 13,798 total events and

coordinates for 42 percent of those events.

We then develop a web-based interactive map-overlay visualization tool by

utilizing the Shiny and leaflet packages within R (Chang, Cheng, Allaire, Xie, and

McPherson 2016, Cheng and Xie 2016). The tool’s primary feature is the Map tab, which

provides an interactive map with zoom functionality and location markers for each event.

When the user clicks on a location marker, the original event text is displayed. The tool

also provides functionality to select specific date ranges as well as display, search, and

export from the source data frame. The R Shiny Map tab is shown in Figure 2.

Figure 2: Map Tab for R Shiny Interactive Tool

 xix

With the ability to automatically classify Islamic State Movement text documents

and visually interact with the data contained of those classified as type “Celebrate,”

analysts and decision makers are able to process and understand large amounts of text

data more quickly and effectively.

References

Chang W, Cheng J, Allaire J J, Xie Y & McPherson J (2016). Shiny: Web Application
Framework for R. R package version 0.13.2. https://CRAN.R-
project.org/package=shiny.

Cheng J, & Xie Y (2016). leaflet: Create Interactive Web Maps with the JavaScript
“Leaflet” Library. R package version 1.0.1. https://CRAN.R-
project.org/package=leaflet.

Feinerer I, Hornik K (2015) Text Mining Package “tm,” Version 0.6-2. (Jul 3)
https://cran.r-project.org/web/packages/tm/tm.pdf.

GeoNames Geographical Database. Iraq (IQ) locations. Accessed May 1, 2016,
http://download.geonames.org/export/dump/.

R Core Team (2015) R: A language and environment for statistical computing [Computer
software]. Vienna, Austria: R Foundation for Statistical Computing.
http://www.R-project.org.

Viola P, Jones MJ (2004) Robust Real-Time Face Detection. International Journal of
Computer Vision. 57(2): 137–154.

Weiss SM, Indurkhya N, Zhang T (2010) Fundamentals of Predictive Text Mining
(Springer New York Inc., New York).

Whiteside C (2014) The Smiling Scented Men: The Political Worldview of the Islamic
State of Iraq, 2003–2013 (December) Doctoral dissertation, Washington State
University.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

ACKNOWLEDGMENTS

I could not have completed this thesis or the NPS Operations Research curriculum

without the steadfast support and encouragement of my loving family. Jenny, thank you

for allowing me to attend to my studies, even when it was inconvenient for you. We have

faced a windy road called foster care during our time in Monterey, and despite significant

demands on your time and emotions, you have always supported and encouraged me. I

am also thankful to my boys, David and Aiden, who have been sensitive and

understanding to the demands on my time, even when I was home.

I am thankful for the guidance of Professor Whitaker, who was willing to

entertain my ideas and explore newer areas of research. Thank you for sharing your

experience and your busy schedule with me. I am also thankful for Professor Whiteside

and his Islamic State Movement expertise. Your experience and insights were helpful and

your enthusiasm was encouraging as I set out on this journey with your dissertation and

database in hand.

I also want to thank my fellow cohort members who helped me through my time

at NPS. I am appreciative to Ben McCaleb for his help with numerous classes and

projects, as well as Dave Macey for his assistance learning R Shiny. We have a great

cohort and I was proud to share my time with such talented and selfless officers.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION AND BACKGROUND

A. INTRODUCTION

Analysts and researchers today are struggling to process the large amounts of

information that flows across myriads of global domains. In the world of text data,

manual analytic methods cannot keep pace with the numbers of documents and amount

of text being published. In an effort to alleviate some of the burden of existing manual

approaches, we apply Natural Language Processing (NLP) tools to a unique database

constructed from approximately 3,000 English translated press releases published by the

Islamic State Movement from 2003 to 2013.

This database was constructed manually by Whiteside (2014). It is unique in that

it contains files with English translated text documents (one for each press release) and a

Microsoft Excel Workbook containing data (by document), such as the date, author,

document type, target, and type of incident extracted by a careful reading of each

document. This database is also unique in that, unlike other terrorist databases, its scope

is restricted to the Islamic State Movement terrorist activities, and only those activities as

reported by the Islamic State’s official media outlets. Thus, the perspective of the

database is from one source, that of the perpetrators. These features of Whiteside’s

database make it an ideal vehicle for developing NLP tools to help automate the efforts of

analysts to extract data from similar documents. In this thesis, we use Whiteside’s

database and NLP tools for two main purposes. The first purpose is to develop a

classification model that demonstrates the ability to determine a document type based on

its text contents. The second is to create an interactive web-based data visualization tool

that assists analysts and decisions makers in their efforts to analyze terrorist events within

time and geographic space.

In this chapter, we provide background by examining two widely used publically

available databases of terrorist activities and comparing the methodologies used to

construct these databases with the methodology used by Whiteside (2014) in constructing

his Islamic State Movement database.

2

B. TERRORISM DATABASE METHODOLOGIES

Collecting data on terrorist activities is a challenging endeavor. Many obstacles

present themselves when attempting to standardize data collection methodologies for

loosely defined people and organizations committing violent acts for various goals. One

of the first challenges is defining and understanding the types of activities that must be

collected. The definition of terrorism is not always well understood and requires

clarification. Should data collection include attempted acts of violence from non-state

actors? Does there need to be a political incentive to an act of terrorism? Answering these

and similar questions might not be of particular consequence in some cases, but it is

important for the analyst and decision maker to understand the story behind the data

when attempting to draw conclusions or make comparisons.

A second challenge is in the identification and verification of the data source.

When collecting information on domestic criminal violence there are relatively few

sources for collection. These include law enforcement “official” accounts, witness

accounts, and self-reporting (LaFree and Dugan 2007). However, the majority of these

types of sources do not exist for terrorist activities. It is essential that users accessing a

terrorism database understand what sources are used in the data collection efforts and the

validity of those sources. Multiple sources may report the same events and a mechanism

must be in place to rectify conflicts or remove duplicates.

As we proceed with analysis in subsequent chapters, it is important that the scope,

context, and collection methodology is thoroughly evaluated and understood. To this end,

two current terrorism databases are presented and compared with Whiteside’s Islamic

State Movement database. These databases are the Global Terrorism Database (GTD) and

the Iraq Body Count (IBC) Database.

1. Global Terrorism Database

The GTD is an open-source database that compiles information on global terrorist

activities. It is administered by the National Consortium for the Study of Terrorism and

Responses to Terrorism (START), which falls under the University of Maryland and the

U.S. Department of Homeland Security (GTD 2016). GTD maintains a comprehensive

database on terrorist events from 1970 through 2014. With a global outlook, the scope of

3

the GTD is extremely large. It relies on a baseline database called the Pinkerton Global

Intelligence Services (PGIS), which collected terrorist activities from 1970 to 1997.

Critiques of the database point out that the number of incidents is very high. The GTD

includes threatened attempts of violence in addition to violent acts themselves. In

addition, LaFree et al. (2007), the director of START openly admits, “Because the goal of

the data collection was to provide risk assessment to corporate customers, the data base

was designed to err on the side of inclusiveness.”

Starting in 1998, GTD began collecting its data in cooperation with the Center for

Terrorism and Intelligence Studies (CETIS). However, the events were still captured

retrospectively by identifying archived sources that document terrorist activities. In

addition, GTD changed its definition of terrorism and expanded the number of variables

it collected on each incident (GTD 2016). In 2008, the Institute for the Study of Violent

Groups (ISVG) started a data collection process that recorded terrorist activities until

October 2011. This collection was integrated with both the older and newer GTD

collection methodologies (GTD 2016).

Since 2007, GTD has developed a new methodology for collecting virtually real-

time terrorist activity data. As Jensen (2013), a GTD data collection manager explains,

Instead of relying on the common practice of performing targeted searches
against a few well-known news sources or news aggregators—a technique
that was used in the past by vendors tasked with compiling the GTD—the
GTD team ultimately decided that the best way forward was to start with
an extensive pool of news articles culled from myriad sources.

This methodology has its pros and cons. Due to the vast amount of data being

collected on a daily basis, GTD relies on tailored search terms to download “on average

1.3 million news articles per day from a pool of over 55,000 unique sources” (Jensen

2013). These sources are then processed with a series of NLP and machine learning tools

in order to remove duplicates, find similarities between sources, and make an automatic

determination of which sources contain terrorist events. These tools are likely effective in

acquiring sources related to suspected terrorist events, but the fidelity and authenticity of

the final classifications of the events have been called into question, especially compared

with the methodology employed from 1997 to 2007.

4

A majority of GTD’s critics point out that this comprehensive database is

confusing and deceptive to the user because of its changing definitions and search

methodologies, which impacts consistency in reporting. Pape, Ruby, Bauer, and Jenkins

(2014) explain that “what START has not done is present a plan or even a commitment to

resolve the underlying incongruity in collection methods across time that is painting a

misleading picture of terrorism trends to the world.” Although GTD’s website attempts to

maintain transparency by explaining its evolving processes and definitions, critics point

out the impact these changes have had on numerical results. For example, Figure 1, taken

from Pape et al. (2014), shows how the number of attacks recorded in GTD change over

time and with the changes of collection methodology.

 Number of terrorist attacks are shown by year and display changes in
 the GTD Data Collection Methodology from 1970 to 2014.

Figure 1. Number of Terrorist Attacks Recorded in the Global
Terrorism Database. Source: Pape et al. (2014).

2. Iraq Body Count Database

The Iraq Body Count (IBC) database is an open-source web-based citizen

initiative that describes itself as “rooted in the mainstream peace movement, which

primarily opposes wars for being unnecessary” (Sloboda 2006). The scope is much

different from the scope of the GTD, as it only focuses on Iraqi civilian deaths. IBC

defends its data collection methodology that relies solely on open-source web-published

5

media reports in the English language. It denies any bias introduced by limiting sources

to English language media reports. IBC critics claim that its body counts significantly

underestimate reality. A 2006 Lancet study estimates the number of deaths in Iraq from

March 2003 to September 2004 to be 655,000 (Burnham, Lafta, Doocy, and Roberts

2006). In a September 2007 press release, IBC criticized the Lancet study stating that

“our own view is that the current death toll could be around twice the numbers recorded

by IBC and the various official sources in Iraq. We do not think it could possibly be 10

times higher.” Critiques of the 2006 Lancet study cite issues with its methodology, to

include its assumptions regarding the pre-invasion mortality rate and the number of

sampling clusters used in the survey analysis (Kaplan 2006; Moore 2006). Spagat (2010)

presents evidence that the study authors used data fabrication and falsification, and

committed “ethical violations to the survey’s respondents.”

Despite its critics, IBC is considered a reputable reporting source for its area of

expertise. It is believed by many to resist the tendency to over-report incidents and to

maintain a consistent data collection methodology. IBC is often quoted in literature and

used as a source for Iraqi civilian death counts and analysis.

3. Database Comparisons Illustrated

The reason for significant differences among reputable studies and databases often

relies on their data collection and coding methodologies. IBC uses more restrictive search

methods for its data collection and their definition criterion for an incident is slightly different

from that of the GTD. The variables and coding methodology employed by IBC are also

different from the GTD. IBC attempts to collect 18 variables on each incident whereas GTD

collects between 45 and 120 variables. In addition, the IBC database can only be queried for

one of six categories of perpetrators, of which specific terrorist groups cannot be selected.

Within the GTD, the user has more flexibility to select a specific group to which the terrorist

act can likely be attributed. IBC output focuses more on the statistics related to the number of

incidents and number of individuals killed, rather than the group responsible for these

actions.

The differences in terrorism databases are often not transparent to the user. For

example, the methodology for coding the identity of a particular terrorist group can have

6

significant consequences for an uninformed user. To illustrate this point we consider the

coding methodology for the Islamic State Movement in the GTD from 2003 to 2009, but

first it is important to understand the context of this example.

The Islamic State Movement can trace its origins to a group named Al-Qaeda in

Iraq led by the Jordanian militant, Abu Musab al-Zarqawi, who sought refuge from

Afghanistan in Iraq. During the spring of 2003, the United States invaded Iraq, and

Zarqawi “collected a small group of true believers and awaited the coming invasion with

a preternatural instinct for future opportunity” (Whiteside 2014). As the United States

removed Saddam Hussein from power and relieved many Iraqi police and military from

their duties, Zarqawi and his Sunni group seized the opportunity to gain power and

influence. Although Zarqawi was killed in an airstrike in Iraq in 2006, the group’s rise to

prominence allowed them to gain acceptance as an Al-Qaeda affiliate and official

recognition as the Islamic State of Iraq (Laub and Masters 2013).

The rise of the Islamic State Movement displays the complexities related to

coding conventions for terrorist databases. The exact point in time when the Islamic State

came to power and broke its affiliation from Al-Qaeda is not perfectly clear, but there is

evidence that the Islamic State’s identity formed under Zarqawi in 2003. It is more clear

that the organization existed in October 2006, when the “Mujahidin Shura Council

announced an alliance of several more jihadi factions and Sunni tribal leaders known as

the Alliance of the Scented Ones” and subsequently announced the existence of the

Islamic State of Iraq (Bunzel 2015). Despite this announcement, many journalists,

reporters, and commentators continued to carry the name Al-Qaeda to represent the

Islamic State for some time.

Two searches of the GTD illustrate the impact of naming conventions on database

queries for the Islamic State Movement from 2003 to 2009. A first search yields 94

incidents conducted by the “Islamic State of Iraq,” of which zero incidents are attributed

to the group prior to 2006. A second search shows 181 total incidents conducted by the

groups “Al-Qa’ida” and “Al-Qa’ida in Iraq.” Of these 181 incidents, 103 occur from

2007 to 2009. The GTD coding shows that the database fails to clearly delineate the

transition of the terrorist group from its status as Al-Qaeda to the Islamic State of Iraq. A

final inclusive search for all perpetrator categories from 2003 to 2009 reveals 5,144

7

incidents, of which over 90 percent belong to the “Unknown” perpetrator group. Figure 2

shows screen shots of the results of the first two searches.

All GTD Searches: Iraq, 2003–2009
 Top Search: “Islamic State of Iraq”: 94 Incidents
 Bottom Search: “Al-Qa’ida” and :Al-Qa’ida in Iraq”: 181 Incidents
 Additional Search (not depicted): “Unknown” perpetrator: 5,144 Incidents

Figure 2. Global Terrorism Database Search Results for Al-Qaeda and the
Islamic State of Iraq from 2003–2009. Source: GTD (2016).

A similar search of the IBC database from 2003 to 2009, shown in Figure 3,

results in 5,002 incidents conducted by “anti-government/occupation forces.” This coding

category for the incident perpetrator is most aligned with incidents attributable to the

Islamic State Movement. Similar to the GTD, many incidents are not assigned to a

specific perpetrator group.

8

Blue: Incidents conducted by “anti-government/occupation forces”: 5,002
Red: Incidents conducted by “unknown actors”: 19,821

Figure 3. Iraq Body Count Database Search Results for Perpetrator Groups
Likely to Contain Islamic State of Iraq Members, 2003–2009 Source:

IBC (2016).

Disparities between databases concerning coding methodologies like

categorization of perpetrator groups highlight areas of caution. If a database has a large

scope and research is being conducted for a specific subset or focus area, it is important

to first understand the database definitions, as well as data collection and coding

methodologies. In this thesis, we will analyze a database very similar to that of the GTD

and IBC, but of narrower scope and designed to represent a particular perspective.

4. Islamic State Movement Database

In December 2014, Dr. Craig Whiteside, a retired United States Army Lieutenant

Colonel, published his Ph.D. dissertation titled, “The Smiling, Scented Men: The Political

Worldview of the Islamic State of Iraq, 2003–2013.” His research focuses on

investigating the political worldview of this powerful terrorist organization in order to

describe their strategic targeting (Whiteside 2014). Whiteside’s research involves the

analysis of nearly 3,000 written messages from the group’s officially sanctioned media

outlets. These messages written by the organization’s most trusted agents attempt to

9

capture and disseminate a focused and comprehensive account of the group’s strategic

messaging and operational successes. A majority of the collected documents were

translated from Arabic to English by the United States government and made available on

an open-source website. Whiteside (2014) augments the collection from the following

sources and collections: Combating Terrorism Center (CTC) Harmony, Haverford

College, Flashpoint, and the GTD.

Whiteside (2014) developed his database over time through careful manual

analysis of document sources. Documents written from the Iraqi Government or North

Atlantic Treaty Organization (NATO) perspective, for example, were discarded in the

interest of developing a particular data collection methodology. His desire was to capture

the true Islamic State Movement perspective by using all messages from their officially

sanctioned media sources. Whiteside explains, “Overall, the data I have collected is

reasonably comprehensive, with an estimated 90% of all press releases ISI [Islamic State

of Iraq] has distributed.”

The scope of Whiteside’s Islamic State Movement database is limited to a single

perpetrator, which provides an advantage over other large databases. This allows the

sources to be vetted for authenticity in the collection process. As seen in other databases,

attributing attacks to the Islamic State can be very difficult, especially as many incidents

do not assign a perpetrator or assign them under different names. This is particularly

critical for the 2003–2009 time period in Iraq, where there is disagreement over the

appropriate name for Zarqawi’s emerging organization. Whiteside’s database attributes

activities in 2003 to the Islamic State Movement and consistency is maintained

throughout the entire database from 2003 to 2014.

Because the point of view represented in Whiteside’s database is limited to

sanctioned Islamic State Movement media sources such as Al-Fajr Media, critics may

point out that the database contains exaggerated accounts of terrorist activities. The idea

that a terrorist group inflates its victories in order to spur on its members is a real

concern. However, the unique nature of Whiteside’s collection is its resolve to preserve

the Islamic State Movement point of view to better understand the political worldview

and motivations of this highly influential terrorist organization. Analysis from this

10

collection can also be used to tell a story rarely told in the western world. Through

analysis, the Islamic State Movement narrative can be replayed and compared to other

accounts, and even challenge accepted historical records or point to areas of history that

may need to be revisited.

C. OUTLINE

Subsequent chapters provide details on how to apply NLP tools to the Islamic

State Movement database. Chapter II describes methods to import text from our database

documents and preprocess it in preparation for model building. Chapter III details the

development and results from multiple cross-validated classification models that

automatically classify a document’s type. Chapter IV takes the documents classified as

type “Celebrate,” extracts event summaries, and constructs a data visualization tool that

provides a web-based interactive map containing the plotted events. Finally, Chapter V

provides a summary and recommendations for future work.

11

II. DATA PROCESSING

A. ISLAMIC STATE MOVEMENT DATABASE

The database collected by Whiteside is archived as a set of files (one per

document) and organized into multiple directories by year and type of document. Ninety-

nine percent of the 2,926 documents are Islamic State press releases from open-source

official media outlets. These press releases were published for a variety of purposes and

represent the official messaging of the terrorist group. The database includes 28

translated captured documents that detail what the Islamic State leadership is trying to

convey to its members. It also includes 41 leadership statements from the Haverford

Collection and 15 documents from other sources. Of particular interest for subsequent

processing of document text are the individual document formats and any inherent

encryption or file compression. The two document formats, Portable Document Format

(PDF) and Microsoft Word docx, will be discussed in more detail in the next section.

Table 1 details the breakdown of the database by directory organization and file format.

Table 1. Islamic State Database Breakdown by Document Format

B. DATA IMPORT

The amount of data contained in a set of 2,926 documents of varying lengths may

be overwhelming to certain data structures and hardware systems. One of the main data

tools for managing large amounts of text from multiple documents is called a corpus. The

R software text mining package, tm, is tailored specifically to create and analyze corpora

and other text mining structures that have been developed for NLP (R Core Team 2015;

Feinerer and Hornik 2015). The default corpus type for the tm package is the Volatile

Source

Document Format

Directories 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Captured

Documents

Haverford
Leadership
Statements

Misc

No. Documents 80 143 1115 891 191 115 102 88 92 25 28 41 15
Total Documents

PDF docx PDF and docx

2926

Other CollectionsOpen Source Press and Media Releases

12

Corpus (VCorpus), which can be stored as an R object on a local machine. Larger

corpora can be imported as Permanent Corpus (PCorpus), which are stored outside of R

on an external database (Feinerer and Hornik 2015).

The tm package has the functionality to read documents of various formats into a

corpus. As shown in Table 1, the Islamic State Movement database has PDF files and

zipped compressed Microsoft Word documents with extension docx. The

readerControl argument of the tm function VCorpus()allows the user to specify

file formats of the documents to be imported as a VCorpus object. The option

readPDF for the argument readerControl is used to import the PDF files.

However, the option readDOC uses a Microsoft Word reader that relies on antiword

software that can only convert documents from Microsoft Word versions 2003 or earlier

to plain text (van Os 2008). It cannot be used on Microsoft docx files, which store

document information using the Open XML Format and require the functionality to unzip

compressed files and folders.

In order to process docx files, it is necessary to use software capable of unzipping

and converting these files to an alternate format. A free open-source Perl-based utility

named docx2txt is used to convert docx files to text files (Kumar 2014). Docx2txt is a

command-line utility that includes a Perl script, a Unix/Windows wrapper script and a

configuration file. A sample R script using the doxc2txt to convert docx document files

to text files is shown in Appendix A.

In order to create a combined VCorpus object that contains all 2,926 documents

several methods are considered. One option is to import all PDF documents into a corpus

and then import all text files into a separate corpus. The two corpora can then be

combined into one. However, we chose to convert all documents (both PDF and docx

files) to text files and then import all text files into one corpus utilizing the readPlain

option for the readerControl argument.

To convert the PDF documents into text files, we again leverage a free open-

source software product named Xpdf (Glyph and Cog 2014). The Xpdf suite includes a

PDF text extractor. It is essential to ensure that the PDFs to be converted do not contain

13

password security or encryption, as the Xpdf package will honor these permission

settings. A simple R script similar to the docx2txt script is utilized to convert all PDF’s to

txt files. A sample R script is given in Appendix A.

With all documents appropriately formatted as text documents, and stored as files

with .txt extensions in multiple directories, a VCorpus is constructed by passing to the

VCorpus() function a character vector with the names of all directories containing the

2,926 text files. The resulting corpus contains the text from all documents as well as

metadata. The metadata includes the date-time stamp, derived from when the document

was uploaded to the corpus, as well as the text language and id tag, which contains the

document file name.

C. TEXT PREPROCESSING

Understanding the type of text contained within a corpus is critical to establishing

a logical and ordered path for text processing. Our analysis relies on a “bag of words”

approach in which each document is considered to be an unordered collection of words or

tokens. Thus, the text preprocessing step involves making decisions about how to

tokenize or identify groups of letters as tokens, which tokens should be ignored, and how

to deal with numbers, punctuation and other attributes of the text.

Text attributes of whitespaces and the use of capital letters, numbers, and

stopwords are often considered in preprocessing of the text. We remove extra whitespace

from the corpus, as extra spaces serve no benefit in identifying tokens. Capital letters can

be used to identify proper names, but inconsistencies with text capitalization make this

difficult. Another common practice that we follow is to eliminate capital letters by

changing all text to lower case. Numbers may also be useful in certain contexts but they

often provide undesirable clutter. We also remove numbers in the text preprocessing step.

Stopwords, such as “a,” “an,” and “the,” are commonly used words in English that

provide little added benefit to the understanding of the text. There are variations of

stopwords for each language. The System for the Mechanical Analysis and Retrieval of

Text (SMART), an information retrieval system developed by Cornell in the 1960s,

14

developed a list of English stopwords, which we utilize (SMART information retrieval

system 2004).

Another common text processing technique is to “stem” words. Stemming

reduces words to their root form. For example, in our corpus, it is desirable to stem the

words “assassinate,” “assassinated,” and “assassins” to the word “assassin” so all

variations of this word are treated as a single term. R’s tm package utilizes Porter’s

Stemming Algorithm (Porter 1980) for term normalization in information retrieval

systems.

Text processing is an iterative process, which involves conducting a sequence of

transformations on the corpus and evaluating its subsequent characteristics. Inspecting

the resultant types of tokens and their frequency is critical to iterative evaluations. We

highlighted the role of punctuation in our corpus for future analysis. It becomes evident

that most punctuation is undesirable. However, many Arabic names and locations rely

heavily on apostrophes and dashes. Therefore, we construct a function

RemoveMostPunctuation(), found in Appendix C, that removes all punctuation

except for apostrophes and intra-word dashes.

This specialized function in combination with the tm_map() function from the

tm package is used in a specific sequence of steps to preprocess the text. To illustrate the

corpus preprocessing steps, a line of text is selected from the corpus and the results of

each step of the process are displayed in sequence.

Text from original corpus
On Wednesday, 9 Muharram 1427, corresponding to 8 February 2006,
your brothers from the military wing of The Mujahidin Shura Council
assassinated one of the members of the apostate police named Ali Hariqah
in Al-Tahrir area in Ba’qubah.

Change to lowercase and remove numbers (using tm_map())
on wednesday, muharram , corresponding to february , your brothers from
the military wing of the mujahidin shura council assassinated one of the
members of the apostate police named ali hariqah in al-tahrir area in
ba’qubah.

15

Remove “SMART” stopwords (using tm_map())
wednesday, muharram , february , brothers military wing mujahidin shura
council assassinated members apostate police named ali hariqah al-tahrir
area ba’qubah.

Remove most punctuation (using RemoveMostPunctuation())
wednesday muharram february brothers military wing mujahidin shura
council assassinated members apostate police named ali hariqah al-tahrir
area ba’qubah

Stem and strip whitespace (using tm_map())
wednesday muharram februari brother militari wing mujahidin shura
council assassin member apost polic name ali hariqah al-tahrir area
ba’qubah

Another example illustrates the benefit of preserving dashes and apostrophes

while removing most punctuation from the corpus. A selection of 16 terms from the

corpus processed using the RemoveMostPunctuation() function shows how many

Arabic names and locations are preserved.

“al’uyasat” “kurdiyah” “invador” “al-tal”

“abdil-muhsin” “factori” “cavalri” “mudaf”

“goal” “al-biyah” “disc” “al’zamiyah”

“al-jinabi” “al-khamisat” “al-ruba’iyyah” “al-mismari”

There is no perfect strategy for text preprocessing, but there are methods that

work more effectively than other methods. Most preprocessing strategies come from a

familiarity with the text and developing a sense for what terms prove the most useful in

subsequent analysis. In the case of the Islamic State Movement corpus, we feel the

ordered processing sequence described in this example, and coded in Appendix D,

provide the most advantageous approach to preprocessing the text.

16

D. DOCUMENT TERM MATRIX

Once the text of each document of the corpus is preprocessed, the frequencies of

each term by document are stored in a Document Term Matrix (DTM) or Term

Document Matrix (TDM). A term can be a single token or a sequence of tokens. We

construct two DTMs; both are constructed from the preprocessed corpus and contain

2,926 rows, with each row corresponding to a document. The initial DTM has 24,111

columns, corresponding to the frequencies of terms found in the corpus, where terms are

defined as single tokens or uni-grams. In this section, we discuss modifications of this

initial DTM.

1. N-Gram Tokenizer

Because the DTM of single tokens isolate tokens from their context, n-grams are a

method to preserve some potentially useful relationships between adjacent tokens. N-

grams are sequences of n consecutive tokens found in the documents of a corpus. The

RWeka package provides an NGramTokenizer() function that enables the user to

preserve groups of consecutive tokens based on a minimum and maximum phrase length

(Hornik, Bucht, and Zeileis 2009). For the Islamic State corpus we construct a new DTM

using the NGramTokenizer() function. The new DTM includes uni-grams, bi-grams,

and tri-grams. This increases the size of the DTM from 24,111 terms to over one million

terms.

2. Term Frequency-Inverse Document Frequency Weighting

The weightings applied to terms in each document prove to be influential in

subsequent analysis. The Term Frequency (TF), xij, measures how often term i appears in

document j. Because every document varies in length, the term frequency is normalized

often by dividing by the number of terms in the document giving the document

normalized TF (Equation 1) (Weiss, Indurkhya, and Zhang 2010):

17

ij

ij
j

x

x
. (1)

However, often the terms that are most important are those that only appear in a few

documents, whereas terms that appear in almost all documents are of little help in

identifying unique characteristics of a document. The Inverse Document Frequency (IDF)

is a decreasing function of the number documents in which a term appears (Weiss et al.

2010). IDF is defined for each term i and the definition we use for IDFi (Equation 2), the

ith term’s IDF, is that used by tm (Feinerer and Hornik 2015).

 

2

1

log ,
0

i D

ij
j

D
IDF

I x


 
 
 
 

 
 


 (2)

where D is the number of documents and I , the indicator function is 1 is its argument is

true and 0 otherwise. The Term Frequency-Inverse Document Frequency (TF-IDF)

weights combine (1) and (2) to give terms more weight that appear more frequently in a

document, but less weight if they appear in most documents. TFIDFij (Equation 3) is

defined for term i and document j as

ij

ij i

ij
j

x
TFIDF IDF

x



 . (3)

The package tm provides a weightTfIdf() function with an option to compute

TFIDFij, as in Equation 3. See Fundamentals of Predictive Text Mining (Weiss et al.

2010) for a more thorough discussion and variations of TF-IDF weightings.

18

3. Sparsity

Another vital attribute of the DTM is its size. The initial DTM, which defines

terms as uni-grams, is a manageable size of 9.7 MB. Introducing bi-grams and tri-grams

as terms in the DTM increases the number of terms to over a million and the size of the

matrix grows to over 113 MB. Two approaches to reducing the size of the DTM are

explored. The first relies on functionality within the tm package to remove terms that

occur in very few documents. The second approach is to store the DTM in a compressed

manner by only storing non-zero entries and their locations.

One way to reduce the size of the DTM is to leverage the

removeSparseTerms() function within the tm package. When applied to this

function, the sparse argument refers to the threshold for the proportion of documents

which do not contain a term, above which the term will be removed. We apply a sparse

argument of 0.99 to our corpus, which means that only terms which appear in fewer than

one percent of the documents will be removed. By changing the sparsity of the DTM to

99 percent, the number of terms in the matrix reduces from 1,007,655 to 40,926. This one

percent change makes the matrix less sparse and provides a large decrease in matrix size,

reducing the DTM from to 113MB to 36.5 MB.

R’s Matrix package is used to compress the size of the DTM even further (Bates

and Maechler 2015). The function sparseMatrix() represents the matrix by two

vectors which identify the row and column indices of the non-zero terms within the

matrix, as well as the values of the non-zero entries and the overall dimensions of the

DTM. As a result, the data is further reduced from the 36.5 MB DTM to 16.9MB in

sparse matrix format.

E. SUPERVISED MODEL PREPARATION

As Whiteside (2014) illustrates in his dissertation, the Islamic State Movement

displayed various methods of communication in the database documents. A breakdown of

his classification of documents is displayed in Figure 4. An overwhelming majority of the

documents, the “Celebrate” documents, contain a message of celebration. These

19

documents are mostly comprised of detailed operational summaries of successful attacks

on military targets. “Strategic Comm(unication)” is another highly represented category.

These documents are taken from video, audio, and written sources. They are often

lengthy and written by top Islamic State leadership in order to disseminate strategic

messages. Whiteside describes that the “Eulogy” documents are similar to “Recruitment”

documents but maintain a heavy focus on memorializing martyrs. “Defense” documents

are used to provide a rebuttal to public criticism, often related to civilian casualties. The

“Attack” category describes documents in which the Islamic State identifies and criticizes

specific individuals. Administrative documents, labeled “Admin,” and “Recruitment”

documents are slightly less prevalent in the database. The “Apology” and “Internal

Critique” documents are limited to one document each (Whiteside 2014).

Figure 4. Whiteside’s Breakdown of Islamic State Movement
Database by Message Type. Source: Whiteside (2014)

1. The Goal

The evidence of similarities between documents is an important concept captured

by Whiteside’s research. Based on his expertise, each of the 2,888 documents in the

database was manually evaluated and classified as one of the types of documents in

Figure 4. An important question is whether NLP tools can identify the same

characteristics as human expertise. In a broader application, the ability to classify massive

amounts of documentation in an automated fashion based on a model will prove highly

advantageous. Time-starved intelligence analysts searching for particular topics or a

20

specific type of document could benefit tremendously from automation. In the next

chapter, we develop a model to help automate Whiteside’s manual classification.

2. Response Variable Reconciliation

In his research, Whiteside stored records of his analysis in Excel spreadsheets.

These provide insights regarding his coding methodology for classifying documents in

his database, as well as insights into the data contained within each document. As with

any database, data entry errors and miscellaneous peculiarities must be reconciled. As

noted in Table 1, the corpus built from the database contains 2,926 documents. Figure 4

reveals that Whiteside’s analysis contains 2,888 documents. The breakdown of

documents is displayed in Figure 5. Through data reconciliation, we discover that 38

documents were added to the database after Whiteside completed his analysis. By

developing R code to compare document names between Whiteside’s coded spreadsheet

and the database of documents, we also find that seven coded entries are duplicates and

20 are missing and need to be removed. Of note, nine documents are preserved despite

discrepancies in document names, such as punctuation and spelling. In the end, there are

2,861 document texts, each with a corresponding document type.

Figure 5. Islamic State Data Set Document Breakdown based on Reconciliation
with Whiteside’s Coded Research

Table 2 gives the breakdown of the 2,861 document types. The “Warning”

classification was added by Whiteside in later research due to its unique characteristics

(Whiteside 2016). For our analysis, we remove three documents corresponding to the

classifications “Warning,” “Apology,” and “Internal Critique.” This leaves 2,858

No. of Documents Type of Document
2,926 Database Total

 - 38 Found in database but not used by Whiteside
 2888 Assigned a document type by Whiteside

 - 7 Duplicates
 - 20 Removals (16 not in database, 4 failed to upload)

2,861 Total with document type

21

documents for analysis. Of these, we note that over 85 percent are of class “Celebrate,” a

feature that we address in the Chapter III.

Table 2. Islamic State Document Type Classifications as Coded by
Whiteside

Admin Attack Defense Eulogy
14 50 85 86

Recruitment Warning Apology Celebrate
18 1 1 2447

Internal Critique Strategic Comm
1 158

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. CLASSIFICATION MODEL

A. MODELING APPROACH

In this chapter, we use the DTMs constructed in Chapter II to fit models to

classify by document type. We begin the chapter by describing the approach of Friedman,

Hastie, and Tibshirani (2010) for fitting generalized linear models, and in particular for

fitting cross-validated multinomial logistic regression models for classification. We use

their approach to fit two models. Model 1 is based on a uni-gram DTM. Model 2 is based

on a DTM with added bi-grams and tri-grams and TF-IDF weights. Because the

“Celebrate” documents account for 85 percent of the data, and hence drive both model

fits, we introduce a cascade of models based on Model 1 and Model 2 that outperforms

either model.

B. CROSS-VALIDATED GLMNET

Glmnet is an R package which fits a regularized generalized linear model by

minimizing a penalized negative log-likelihood. The penalties include the lasso and ridge

penalties, as well as a mixture of the two, called the elastic net. Lasso uses the L1 norm of

the coefficient vector as a penalty, whereas ridge uses the L2 norm. One very helpful

feature of glmnet is that it handles sparse features efficiently. The glmnet package also

accommodates many families of response types, to include binomial, Gaussian, Poisson,

and multinomial, as well as others. In our case, it is appropriate to use the multinomial

response to classify the document types into one of seven categories (Friedman et al.

2010).

One effective method to estimate and reduce prediction error from the model is to

use cross-validation. Cross-validation allows us to strike a balance between a model that

is overfit with low bias and high variance and a model which is underfit with high bias

and low variance (Faraway 2006). Although the cross-validated prediction error is biased,

it helps identify a model with the appropriate tradeoffs. A function called

cv.glmnet() in the glmnet package is used to conduct K-fold cross-validation

(Friedman et al. 2010). Because the database is relatively small (2,861 documents), cross-

24

validation enables us to use the whole database and alleviates the requirement of

choosing and setting aside a validation set. In the case of our K=10 randomly-selected

folds, cv.glmnet() fits the model to 1 9K   folds and predicts on the remaining

fold. This process yields one prediction error, named 1cv . This process is repeated K-1

times yielding the corresponding K-1 prediction errors, 2 ,... Kcv cv . The average of the

10K  prediction errors produces the cross-validated error, cv (Equation 4) (Hastie,

Tibshirani, and Friedman 2009):

 1

K

k
k

cv
cv

K



 . (4)

We use the “one-standard error” rule to choose the best model from the varying

subset sizes. This rule is often used with cross-validation, “in which we choose the most

parsimonious model whose error is no more than one standard error above the error of the

best model” (Hastie 2009).

Building classification models with glmnet is an iterative process which is highly

influenced by the preprocessing detailed in Chapter II. Not only do preprocessing actions

like term weighting and tokenization have an effect on the predictive power of the

classification model, but the order of steps has an impact as well. By varying these

procedures applied to the corpus and DTM, we are able to build a cross-validated

generalized linear multinomial classification model and measure its performance.

Performance is measured by the mean cross-validated misclassification rate for each

model. For cv.glmnet() we note that the results of each model vary because the data

are partitioned randomly in to 10K  folds. Thus, we present an example of our cross-

validated model results and then provide a mean cross-validated misclassification rate

based on one hundred runs of each cross-validated model (Friedman et al. 2010). Two

refined model results are compared to illustrate the effects of data processing on

performance.

25

1. Model 1: Weak Classifier

Data preprocessing of the corpus for Model 1 is conducted as shown in Appendix

D. We change all letters to lower case, remove numbers and stop words, and preserve

intra-word dashes and apostrophes. In addition, we stem all tokens and remove extra

whitespace. Upon completion, we transform the corpus into a DTM. All terms are uni-

grams, whose frequencies will serve as the independent variables for our multinomial

cross-validated model. Because the size of the DTM without n-grams is manageable (9.7

MB), there is no requirement to make adjustments for sparsity. We use this DTM and the

corresponding response variables to fit the first model. The process to generate the

multinomial classification model based on single-token terms is depicted in Figure 6.

Preprocessing includes single-token DTM, no term weighting, and no sparsity reduction

Figure 6. Diagram of Production Process for Classification Model 1.

The results of one run of Classification Model 1 are displayed in Table 3. The

cross-validated misclassification rate for this run is 8.96 percent. We see that the 2,447

“Celebrate” documents influence other document types, forcing them to also be classified

as “Celebrate.” For example, only two of the 50 “Attack” documents are properly

classified and 38 of the 50 are misclassified as “Celebrate” documents. This is an issue

that we will address in subsequent models.

26

Table 3. Model 1 Classification Table–Actual Versus Predicted

Cross-Validated Misclassification Rate: 8.96 percent.

The mean cross-validated misclassification rate over 100 runs is 8.937 percent. In

subsequent models, it becomes clear that Model 1 is the weaker classifier.

To gain more insight into comparing similarities between documents based on

Model 1, we observe the ability of the model to accurately classify “Celebrate”

documents into the proper class. Figure 7 gives the distributions of the estimated

probability that a document is of class “Celebrate” by document type. The estimated

probabilities for the “Celebrate” documents tend to be high. In addition, there is a median

of 0.60 for the estimated probability for “Admin” documents. In contrast, documents

coded as types “Eulogy” and “Strategic Communication” have median estimated

probabilities of less than 0.30. Based on Model 1, we are persuaded that “Celebrate”

documents share more similar features with “Admin” and “Recruitment” documents than

those coded as “Eulogy” or “Strategic Communication.”

Admin Attack Celebrate Defense Eulogy Recruitment Strategic Comm
 Admin 3 0 11 0 0 0 0
 Attack 0 2 38 2 0 0 8
 Celebrate 0 0 2442 0 0 0 5
 Defense 1 0 39 36 1 0 8
 Eulogy 0 0 32 1 50 0 3
 Recruitment 0 0 12 0 1 1 4
 Strategic Communication 0 0 69 2 2 0 85

 Coded Classification
Predicted Classification

27

Figure 7. Model 1 Boxplots of the Estimated Probability that a Document is of
Type “Celebrate” by Actual Document Type

2. Model 2: Strong Classifier

Data preprocessing of the corpus for Model 1 and Model 2 are identical.

However, the DTM for Model 2 is subject to the transformations described in Chapter II.

Here we use the DTM with additional bi-grams and tri-grams. In addition, we apply TF-

IDF weighting and change the sparsity to 99 percent (Figure 8).

Preprocessing includes single-word, bi-grams, tri-grams, TD-IDF weighting and sparsity change to 0.99.

Figure 8. Diagram of Production Process for Classification Model 2.

The influence of TD-IDF and term tokenization to the tri-gram level provides a

respectable increase in the cross-validated multinomial generalized linear model

Admin Attack Defense Eulogy Recruitment Celebrate Strategic Communication

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Glmnet Multiclass Predictions for Documents coded as Celebrate
based on single-term DTM with normal weighting

Document Classification

P
re

d
ic

tio
n

P
ro

b
a

b
ili

ty

28

performance. For a small computational cost, the cross-validated misclassification rate

reduces to 7.73 percent (Table 4). This model is the best performing multinomial

classifier and is thus labeled as the “Strong Classifier.”

Table 4. Model 2 Classification Table—Actual Versus Predicted

Cross-Validated Misclassification Rate: 7.73 percent.

The mean cross-validated misclassification rate over 100 runs for Model 2 is 7.195

percent. When we compare the predictive power of Model 2 with Model 1, Figure 9

shows that Model 2 is a stronger classifier of “Celebrate” documents.

Figure 9. Model 2 Boxplots of the Estimated Probability that a Document is of
type “Celebrate” by Actual Document Type.

C. CASCADE MODEL

In the pursuit of improving upon the performance of our classifiers, we consider

the framework and methodologies demonstrated in research focused on real-time face

detection. In the work of Viola and Jones (2014), a method is established “for combining

classifiers in a “cascade” which allows background regions of the image to be quickly

Admin Attack Celebrate Defense Eulogy Recruitment Strategic Comm
 Admin 0 0 14 0 0 0 0
 Attack 0 7 30 2 0 0 11
 Celebrate 0 0 2438 1 0 0 8
 Defense 0 0 32 39 1 0 13
 Eulogy 0 0 22 0 55 0 9
 Recruitment 0 0 11 0 0 0 7
 Strategic Communication 0 0 59 0 1 0 98

Predicted Classification
 Coded Classification

Admin Attack Defense Eulogy Recruitment Celebrate Strategic Communication

0.
0

0
.2

0
.4

0
.6

0
.8

1
.0

Glmnet Multiclass Predictions for Documents coded as Celebrate
based on single, bi-gram, tri-gram terms and tf-idf weighting

Document Classification

P
re

di
ct

io
n

 P
ro

ba
b

ili
ty

29

discarded while spending more computation on promising face-like regions.” Although

slightly different in application, we consider parallels with the overwhelming number of

“Celebrate” documents in the Islamic State Movement database.

One of the critical components to the Viola and Jones framework is the strategic

use of different classifiers. Although our database of documents and features is not

extremely large and computational speed is not a prohibitive factor, this will not always

be the case. Like real-time face detection, an enormous corpus of text documents may

prohibit training a traditional multinomial classification model. Viola and Jones (2004)

explain that

the key insight is that smaller, and therefore more efficient, boosted
classifiers can be constructed which reject many of the negative sub-
windows while detecting almost all positive instances. Simple classifiers
are used to reject that majority of sub-windows before more complex
classifiers are called upon to achieve low false positive rates.

The methodology for a detection cascade is displayed in Figure 10, where many

easily-classified negative examples can be eliminated to reduce the number of

observations that need further processing (Viola and Jones 2010). In a similar construct,

we utilize our “Weak Classifier,” Model 1, to determine with great confidence which

documents are of type “Celebrate.” After several iterations of classifying “Celebrate”

documents and setting them aside, we bring the relative number of each document type in

a new DTM into balance. This subsequently enables us to use the “Strong Classifier,”

Model 2, to finalize the classification process. By keeping track of the classifications at

every level of the cascade, it is possible to reassemble the results to classify the entire

corpus.

30

Figure 10. Face Detection Cascade Model Schematic.
Source: Viola and Jones (2004).

As with Model 1 and Model 2, the cascade model construct first preprocesses the text

data into a corpus followed by a DTM. Because both the “Weak Classifier” and “Strong

Classifier” are used in the cascade, we prepare two distinct DTMs. Figure 11 shows the

addition of the layered classifier. First, the cascade model uses a binomial cross-validated

classification model to determine if a document is a “Celebrate” or a “Not Celebrate”

document. Rather than classifying documents as “Celebrate” if the estimated probability of

“Celebrate” is greater than 0.50, we raise the threshold to 0.94. This identifies approximately

1000 documents as type “Celebrate” while providing zero false positives (documents

classified as “Celebrate” which actually belong to one of the other six document types). False

negatives are allowed at this stage. This process is repeated two additional times with

decreasing thresholds of 0.84 and 0.70 respectively. At this point in the cascade, over 2000

“Celebrate” documents have been properly classified and set aside, leaving a more balanced

number of each type of document in the DTM (Figure 12).

31

Figure 11. Diagram of Production Process for Cascade Classification Model.

Figure 12. Approximate Document Type Distribution Upon Reaching the Fourth
Level of the Cascade Classification Model.

Once we reach the fourth level of the cascade model, the classifier is replaced

with a multinomial “Strong Classifier” applied to a database with more evenly distributed

document types. Upon receiving the results of the multinomial classification, we

reassemble the overall predicted classes from each level of the cascade. An example of

the final classification results of the cascade method are shown in Table 5.

Admin Attack Defense Eulogy
14 50 85 86

Recruitment Celebrate Strategic Comm
18 175 158

32

Table 5. Cascade Model Classification Table—Actual Versus Predicted

Cross-Validated Misclassification Rate: 5.5 percent.

Although the cascade model still faces challenges with a database containing

some rare document types, it overwhelming outperforms Model 1 and Model 2. The

example shown in Table 5 demonstrates a 5.5 percent cross-validated misclassification

rate, which surpasses the 9 percent and 7.7 percent cross-validated misclassification rates

shown in Table 3 and Table 4. The mean cross-validated misclassification rate over 100

runs of is 5.71 percent.

The cascade model attempts to compensate for characteristics present in many

databases, mainly the limited size of the number of observations and the unbalanced

distribution of the categorical response variable. We assume that the distribution of

document types for a new set of documents sourced from Islamic State Movement

officially sanctioned media outlets will be similar. This means that roughly 80 to 90

percent of the documents in a future corpus will be “Celebrate” documents. We feel this

assumption is reasonable and the model thresholds could be “tweaked” to accommodate

for any significant differences.

Admin Attack Celebrate Defense Eulogy Recruitment Strategic Comm
 Admin 2 0 6 0 1 0 5
 Attack 0 17 6 3 0 0 24
 Celebrate 0 0 2419 3 2 0 23
 Defense 0 0 14 54 2 0 15
 Eulogy 0 0 2 0 70 0 14
 Recruitment 0 0 1 0 2 1 14
 Strategic Communication 0 0 19 1 1 0 137

 Coded Classification
Predicted Classification

33

IV. DATA VISUALIZATION

A. VISUALIZATION TOOL

The Islamic State Movement “Celebrate” documents exhibit a standardized and

highly structured format. These documents are rich with data that has been meticulously

collected and published by its officially sanctioned media outlets. Each operational

summary contains a greeting and an introduction to the general content of the document,

followed by a body of specific events, and a conclusion which often declares praise to

God for their accomplishments. This unique structure proves to be highly advantageous

as we develop an analytic tool to visualize and understand the wealth of information

contained within the summaries.

The visualization of the data within the Islamic State “Celebrate” documents

provides a much deeper understanding of the Islamic State battle plan and strategy. With

the ability to see the geographic relationships of events as they relate to time and space,

analysts are able to deepen their understanding of history and the methods by which the

Islamic State operated in Iraq over a period of ten years. Identifying patterns and trends

can help us understand the Islamic State as they conduct their current operations.

B. DATA EXTRACTION

The focus of our data visualization efforts is to extract and display the specific

events contained in the body of each “Celebrate” document. The descriptive accounts of

each event claimed by the Islamic State Movement provide the date and location of each

attack, occasionally the time of day, as well as a description of the attack and its target.

Many of the events are numbered and we leverage this characteristic as we develop our

tool. Figure 13 shows the structure of the body of a typical “Celebrate” document in its

original Arabic format, as well as its preserved structure translated into English.

Occasionally these event descriptions start with the word “On” followed by the day of the

week. We account for both formats in the event search methodology.

34

Figure 13. “Celebrate” Document Common Format with Numbered Events
Adapted from Hanin Network Forums (2014)

The first objective in the data visualization process is to extract and organize the

information contained in the body of each operational summary. The goal for this

objective is to create an R data set called a data frame where each row is an event that

contains the document name from which it came, the raw text from the event, and the

day, time, location, and latitude and longitude for each event.

35

1. Events

In order to create the data frame, we start with the original corpus of documents.

We employ two functions, shown in Appendix E, which utilize regular expressions to

extract only those lines of text that correspond to events. The text corresponding to these

events are preserved in the data frame, while all document text contained in the

introduction and conclusion of the document are discarded. We pair each event, which

has its own row, with its document name for future reference. After processing all

documents, the data frame contains 13,798 rows, corresponding to the total number of

events. A small percentage of the “Celebrate” documents do not adhere to the

standardized formats and therefore we are unable to include these events in our final tool.

2. Dates

The data frame now contains text that corresponds to the descriptive account of

each event. The challenge is to extract key pieces of information from the text so that

they can be accurately categorized as a date, time, or location. Extracting the date and

time of each event is relatively straightforward. To extract the dates, we use the

str_extract() function from the stringr package (Wickham 2015). For example,

the data frame of events provides the following text:

“2. At 1100 on Wednesday, 1 Dhu al-Qi’dah 1427, correspondi
ng to 22 November 2006, one of the Crusader snipers was sho
t at the Crusader army headquarters in Hit. Praise and grat
itude be to God.”

The find.date() function, shown in Appendix F, relies on the structure of the

translated English date, but it can also accommodate one or two digit dates as well as

abbreviated or full spellings of the month. The function outputs the following string:

“22 November 2006”

We subsequently convert the date string with the strptime()function, a base R

function, from a character string to a “POSIXlt” class object with the appropriate Iraq

36

time zone, yielding the date “2006-11-22 ADT.” This date format is provided to the

user in the final data visualization tool.

3. Times

A similar function utilizes regular expressions to capitalize on the consistent

format of presenting the times of the events. The find.time() function searches for

the pattern of the word “at” followed by four digits, where “at” can include any

combination of upper or lower-case letters. Applied to the same string describing the

November 2006 attack, the find.time() function returns “1100.” The data frame

now contains the following columns:

“docname” “text” “dates” “times”

4. Location

The next objective is to extract a location from each attack event in the data

frame. One assumption we make is that extracted event only describes an event that

occurs in one geographic location. If the event described, for example, highlights a series

of simultaneous attacks in several locations, the algorithm will not capture all locations.

Secondly, the algorithm we use is not foolproof. It makes assumptions to mechanically

maximize the accuracy and fidelity of the extracted location, and thus it will not

accommodate every kind of text presentation of a location description.

Through analyzing the structure of the “Celebrate” documents, we observe that

there are patterns in the presentation of locations within the text. For example, a common

string of text contains the following:

“17. On 18 Dhu-al-Qi’dah 1431 [corresponding to 26 October
2010], one of the apostate spies was targeted with the
detonation of a sticky explosive device on his vehicle in
Al-Sihhah neighborhood in Al-Dawrah area. The explosion
resulted in seriously wounding him.”

37

This event presents both a neighborhood and an area. Our algorithm attempts to account

for these differences in fidelity and extract the “neighborhood” because it will logically

have a more exact location. Another example includes:

“6. On Saturday, 8 Dhu-al-Qi’dah 1428, corresponding to 17
November 2007, an explosive was detonated against a four-
wheel drive vehicle belonging to the Coalition forces on
Al-Mu’askar Street, in Al-Rastamiyah area, destroying it
and killing or wounding everyone inside it. Praise and
gratitude be to God.”

In this attack, there is a street name provided which we desire to prioritize over the area

location. However, we must also prepare for the possibility that we may not be able to

locate a particular street name on a map.

In order to maximize the accuracy and fidelity of the extracted locations, we

create five search categories and prioritize them. The search categories are listed in

decreasing priority in Table 6. We utilize regular expressions within the R code to extract

strings that match exact patterns. In the process, we accommodate situations where we

face boundaries, such as the presence of punctuation at the beginning or end of a string.

With the search functions, we also remove the word “the” from the function outputs in

order to increase the chance of matching a location name.

For the first four location search categories, we use regular expressions to extract

location names that precede the words “street” or “road,” “neighborhood,” “district,” or

“area.”

38

Table 6. Prioritized Location Search Categories, Patterns, and Functions

The find.misc() function is the most complex use of regular expressions and

accommodates more than one pattern match within each event. It extracts strings

bracketed by the word “in” and a comma, period, or the end of the event text. After the

function extracts these strings, regular expressions further refine the misc category

solution by searching for key words in the string and removing words like “the” which

prevent a location match in subsequent steps. Observe the following string:

“The attack took place in Mosul, in the center of the
street, in the vicinity of the Yaqten Restaurant . Praise
be to God.”

The find.misc() function, shown in Appendix G, applied to this string returns the

following results:

“Mosul” “street” “Yaqten Restaurant”

By utilizing all five search categories we attempt to maximize the number of events with

an assigned location. Despite this layered approach, our algorithm is unable to assign a

location for every event. Some attacks simply do not provide a location in their account.

However, many other accounts present unique challenges related to language and text

that cause our methodology to fall short. Therefore, we develop an additional tool to help

increase the likelihood of assigning a location to each event. To accomplish this, we use a

search through a location database. We will first introduce the database and its necessity,

and subsequently describe the search technique as it fits within our overall search

algorithm.

Search Category String search pattern, ignoring case Function
street or road Between "in" or "on" and "street" or "road" find.road()
neighborhood Between "in" and "neighborhood" find.neigh()
district Between "in" and "district" find.district()
area Between "in" and " area" find.area()
misc Between "in" and next punctuation ** find.misc()
 ** For the misc category, the following punctuation has previously been removed
 by the rm_punc () function: '" 's "," ' ", " ` "," - "

39

C. GEONAME LOCATION DATABASE

Extracting the locations is a critical component of creating a tool to visualize the

data contained within each of the events claimed by the Islamic State Movement.

However, in order to build the tool, we must be able to plot each attack’s location to an

exact location on a map. There are many methods to achieve this end, but due to the high

geographic fidelity of many of the attack accounts, we choose to cross-reference an Iraq

database that contains latitudes and longitudes.

The GeoNames geographical database is an unclassified publically available

database that can be downloaded under a creative commons attribution license. The

database “contains over 10 million geographical names and consists of over 9 million

unique features whereof 2.8 million populated places and 5.5 million alternate names”

(GeoNames 2016). The locations are categorized into one of nine feature classes and

further subdivided into 645 feature codes, which include categories such as cities,

districts, areas, streets, parks, buildings, and lakes (GeoNames 2016).

The current Iraq database contains 31,894 locations. These primary locations also

collectively maintain 162,851 alternate names. In order to avoid text processing

problems, we delete non-ASCII characters, which removes all Arabic alternate names

while preserving those in the English language. After removal, our database contains

79,263 alternate names. A critical attribute of the GeoNames database is that each

location has an assigned latitude and longitude in the World Geodetic System 1984

(WGS84) format. In R, we construct a new data frame that contains three columns. The

first column contains all primary and alternate names. The second and third columns

contain latitudes and longitudes corresponding to all 111,157 location names. This data

frame allows us to match location names to events within the “Celebrate” documents and

assign matched events with a latitude and longitude.

D. LOCATION MATCHING

The two greatest obstacles in building a data visualization tool are extracting

location names from the text and the limited scope of most Iraq place name databases.

Although the GeoNames database is relatively comprehensive, it is difficult to match all

40

manners of descriptions locations. Some of these challenges arise when presented with a

pseudonym or generic name to represent a particular location, such as the use of the

phrase “capital city” to represent Baghdad or phrases such as “northern Baghdad.” Our

algorithms attempt to accommodate some of these presentations, but without the use of

machine learning techniques, for example, we face limitations.

In order to prioritize location selections and maximize the ability to plot these

locations, our algorithm systematically descends the search categories shown in Table 6.

For example, if our functions extract a neighborhood name and an area name from an

event text, the algorithm prioritizes the neighborhood name due to its fidelity, but only if

the neighborhood name contains coordinates in the GeoName database. If only the area

name provides matched coordinates, the area name is selected.

The first four search categories are the most accurate in extracting location names

likely to be found in the GeoName database. The misc category is highly beneficial but

less accurate due to its relaxed search design. By using the first four categories, 57.4

percent of the events are assigned location names. By adding the misc search category

over 90 percent of the events contain a string to represent the location name.

To enhance accuracy and improve the ability to assign coordinates to each event,

we develop an additional search method. This process takes each of the 111,157 location

names within the GeoName database and attempts to locate them within each of the

13,798 events. This method is computationally expensive and requires over 1.53 billion

searches. To address these requirements, we take advantage of the increased capacity

provided by the Naval Postgraduate School’s (NPS) High Performance Computing

(HPC) resources. The Hamming supercomputer cluster enables us to leverage 64 cores of

computing power and reduce a 44-hour search on a four-core laptop to two hours and 45

minutes. We run the Hamming job with an R script file (Appendix H). The search finds

6,100 location matches within the text, of which 1,138 reside within unique events. The

search increases the number of events with coordinates by 768, providing a 20 percent

increase in the number of events available for plotting.

41

The misc search category is prioritized last in the location acquisition logic.

Approximately 45 percent of the locations extracted by the misc search category do not

result in matching coordinates. However, 2,204 of its findings are used to plot Islamic

State Movement events.

By combining and prioritizing all location search methods, our algorithm provides

location names for 91.2 percent of the 13,798 total events and coordinates for 42 percent

of those events.

E. R SHINY VISUALIZATION TOOL

In order to provide the user with a tool to visualize each event, the data must be

consolidated and formatted. We construct a final data frame that contains the following

columns: event number, document name, event text, date, time, location name, latitude,

and longitude. The information also serves to help the user understand the data once in its

visual format. We construct the tool to visualize this data with two main R packages,

Shiny and leaflet. The leaflet package is used within Shiny to provide an interface to

JavaScript libraries to access interactive maps (Cheng and Xie 2016). It provides

functionality to develop pop-up markers and cluster items plotted on a large variety of

map backgrounds. The JavaScript behind the package provides the ability to zoom in to

neighborhoods and maintains scroll functionality typically found in web-interactive

applications. The Shiny package provides the ability to develop an interactive tool in R

that can be hosted by a local computer or a server to provide numerous users with an

interactive web-based tool (Chang, Cheng, Allaire, Xie, McPherson 2016). We develop a

user interface and a server within Shiny which provides the R code needed to host the

data visualization tool.

We format the tool with three tabs and functionality to select a date range. The

Main tab, seen in Figure 14, provides background information and basic instructions. The

user can close the application from the Main tab.

42

Figure 14. Main Tab for R Shiny Interactive Tool

The Map tab, shown in Figure 15, contains the interactive map with the plotted

events for the date range selected. As the user zooms in, the events separate from their

clusters and each attack is represented by a blue marker. By clicking on a marker, the text

from that event displays. Figure 15 shows an Islamic State Movement account of a

mortar attack from October 2006, which occurred southwest of Baghdad in the Sadr Al-

Yusufiyah area.

43

Figure 15. Map Tab for R Shiny Interactive Tool

The Data tab, shown in Figure 16, displays the data frame that generates the event

markers on the Map tab. The data frame is searchable and can be sorted by column or

filtered by date range. An “Export to CSV” button allows the user to download and save

information from their custom search or filter.

44

Figure 16. Data Tab for R Shiny Interactive Tool

The Islamic State Movement data visualization tool provides the user with the

ability to analyze trends in attacks and more effectively see relationships between time

and space for the data contained within thousands of text documents. The algorithms and

methodologies we use to produce this tool are not perfect and the next chapter will

discuss potential ways to improve and expand upon the tool created in this thesis.

45

V. SUMMARY AND FUTURE WORK

A. SUMMARY

The Islamic State Movement database collected by Whiteside (2014) holds to a

principled collection methodology and provides a pure and unique point of view based on

its sources. Analysis of the database’s 2,858 documents creates a burdensome challenge

for manual methods. With the application of R statistical software, and its tm and glmnet

packages in particular, we are able to alleviate some of these challenges by applying NLP

tools. We leverage Whiteside’s manual document analysis to develop supervised cross-

validated classification models and generate the capability to automatically classify

Islamic State Movement documents into one of seven types based only on the terms

present in the text of a document. To address modeling challenges related to an

unbalanced distribution of document types, we develop a cascade cross-validated glmnet

classification model, which provides the best performance of all models with a mean

misclassification rate of 5.71 percent.

Over 85 percent of the Islamic State Movement documents within Whiteside’s

database are classified as type “Celebrate.” These operational summaries provide an

opportunity to develop an interactive tool to help the user visualize the rich data within

the text. By developing a user friendly and highly interactive R Shiny tool, users can see

and explore their data based on geographic and time relationships, enabling easier and

more effective trend analysis. The ability to plot the event locations is dependent on our

algorithm’s ability to extract locations and match these locations to an open-source

GeoName database. Our visualization tool provides location recommendations for 91.2

percent of the 13,798 total events extracted from the database, of which 42 percent of the

events are plotted.

B. FUTURE WORK

The body of work provided in this thesis provides some techniques and

methodologies for alleviating the burden of manual text processing. The document

classification model and data visualization platform provide two helpful tools in

46

contributing to this goal. Other helpful tools could be developed to augment those

developed in this thesis. Also, there is room to improve on our tools and methodologies.

Several improvements for future work include:

1. Collect a Test Set

With the size of Whiteside’s Islamic State Movement database, we chose to

develop a cross-validated classification model. Future work should consist of collecting a

test set which includes documents from 2014 until the present. This new corpus can be

used as a test set to validate our classification models. Special attention should be paid to

understanding the authenticity of the document sources while collecting a test set, as the

Islamic State’s officially sanctioned media outlets are continuously evolving. We

conducted some research in this area and there is evidence to believe that the structure of

the “Celebrate” documents remains consistent in current written documentation.

2. Web-Scraping Functionality

In addition to manually collecting a more current test set for analysis, future work

could include developing a web-scraping tool to collect press releases from official

Islamic State media outlets and provide periodic updates to corpus. This tool could

include a periodic refresh cycle that provides a nearly real-time update to the corpus of

documents.

3. Classify by Type of Attack

The R Shiny data visualization tool could be expanded to identify the type of

attack within each event, such as “IED,” “mortar attack,” or “suicide bomb.” Similar to

our document type classification models, NLP tools could be applied to classify events

according to the type of attack.

4. Comprehensive R Shiny Tool

The data visualization tool could be expanded to include the full body of work

developed in this thesis. By creating functionality within the R Shiny platform to perform

47

all operations, beginning with uploading documents of various formats to create a corpus,

the entire process could be self-contained and executable by any user.

5. Improve Location Identification with Learning

Improvements are needed to comprehensively and reliably extract location

information from each event. The algorithms we implement rigidly make assumptions

about the text formatting and location presentation. Our methods provide a “best

approximation” of the location, and although over 91 percent of the events are assigned a

string in the location category, some of these locations are erroneous. Our algorithms lack

total reliability and future work could include the ability to “learn” location names. An

approach to accomplish this is to use the events with location names that have

corresponding coordinates as a training set and then use supervised machine learning

methods or NLP methods to train models to predict locations from the document text

based on this training set.

6. Updating and Improving the Location Database

Updates to the visualization tool could include creating functionality to

automatically refresh the Iraq GeoName database within the R Shiny interface or

replacing it with a more comprehensive database.

7. Editing the Data Tab Data Frame

Improvements to the visualization tool could include providing the user with the

ability to edit the data frame resident in the R Shiny tool’s Data tab in order to update

event locations. This functionality could provide the user with the ability to select an

individual event and then choose a location from a drop-down list or manually enter a

new location or set of coordinates.

8. Expanding to New Media Types

By expanding the scope of this thesis and Whiteside’s database, the future of

analysis related to the Islamic State Movement should not be confined to written media.

48

As Winter (2015) describes in his research titled “Documenting the Virtual ‘Caliphate,’”

the group is transitioning away from written text and traditional forums.

These forums still exist and are still used; however, they now play a role
secondary to that of open source (Twitter, Tumblr, Facebook etc.) and
peer-to-peer (Kik, Surespot, Telegram etc.) social media, as jihadists have
become less insular and have sought to increase their exposure and
accessibility (Winter 2015).

Future work should attempt to include social media inputs, specifically Twitter, to

include photo and video media, as well as text. As Winter (2015) illustrates in Figure 17,

78 percent of the Islamic State’s propaganda is distributed in the form of photos. This

opens up an entirely new area of research, which includes automated image and video

recognition to help analysts identify events and locations. Machine learning such as

neural networks techniques will prove to be highly advantageous in this area of

expanding popularity.

Figure 17. Islamic State Output by Media Source: Winter (2015)

49

APPENDIX: R FUNCTIONS AND SCRIPTS

A. DOCX TO TEXT CONVERSION

Document conversion from docx format to txt format
Download docx2txt.tgz
https://sourceforge.net/projects/docx2txt/?source=typ_redirect
Install and configure
Executable location c:\tools\docx2txt\docx2txt.bat

exec <- “c:/tools/docx2txt/docx2txt.bat”

For each directory you desire to convert, list the .docx files
there
base <- “P:/”
subdir <- “2006”
mydir <- paste0 (base, subdir)
setwd (mydir)

Find documents with the docx file extension
docx <- list.files (pattern=“\\.docx$”)

Remove the docx file extension
basename <- substring (docx, 1, nchar (docx) - 5)

Give all documents a txt file extension
txt <- paste0 (basename, .”txt”)

Stopping criteria
if (any (is.element (txt, list.files()))) cat (“Stop!\n”)

Loop through all documents and convert to txt files
for (i in docx) {
cmd <- paste0 (exec, “ \,”“ i, “\”“)
system (cmd)
}

50

B. PDF TO TEXT CONVERSION

Document Conversion from PDF to txt format
Download Xpdf free open source PDF viewer/converter
http://www.foolabs.com/xpdf/download.html
Unpack tar.gz file

Set directory for PDF conversion
dir <- “P:/2004”

Make a vector of PDF file names
myfiles <- list.files(path = dir, pattern = “unlocked.pdf,”

full.names = TRUE)

Create a txt file for every pdf in the directory
lapply(myfiles,function(i) system(paste(‘“C:/xpdf/xpdfbin-win-

3.04/bin64/pdftotext.exe”‘,paste0(‘“‘, i, ‘“‘)), wait =
FALSE))

C. REMOVEMOSTPUNCTUATION FUNCTION

removeMostPunctuation<-
function (x, preserve_intra_word_dashes = FALSE)
{
rmpunct <- function(x) {
x <- gsub(,”‘“ “\002,” x)
x <- gsub(“[[:punct:]]+,” ,”“ x)
gsub(“\002,” ,”‘“ x, fixed = TRUE)
}
if (preserve_intra_word_dashes) {
x <- gsub (“([[:alpha:]])-([[:alpha:]]),” “\\1\001\\2,” x)
x <- rmpunct(x)
gsub(“\001,” “-,” x, fixed = TRUE)
} else {
rmpunct(x)
}
}
Adapted from http://stackoverflow.com/questions/27951377/tm-
removepunctuation-except-hashtag

51

D. TM_MAP ORDERED PREPROCESSING ON CORPUS

myCorpus <- tm_map(Corpus, content_transformer(tolower))
myCorpus <- tm_map(myCorpus,removeNumbers)
myCorpus <- tm_map(myCorpus,removeWords,stopwords(“SMART”))
myCorpus <- tm_map(myCorpus,content_transformer(remove

MostPunctuation), preserve_intra_word_dashes = TRUE)
myCorpus <- tm_map(myCorpus,stemDocument)
myCorpus <- tm_map(myCorpus,stripWhitespace)

E. FUNCTIONS TO EXTRACT EVENTS

This function extracts events that start a string
with a number 1–999 followed by a period. Ex: “152. On.”

check.start.num <- function(strg){
grepl(“^[1-9][0-9]{0,2}\\.,”trim(strg))
}
This function extracts events that start a string with
the word “On” followed by a space and then the day of the #
week. Ex: “On Friday, 18..”

check.start.on <- function(strg){
grepl(“^On\\sMonday|^On\\sTuesday|^On\\sWednesday|^On\\sThursday|
^On\\sFriday|^On\\sSaturday|^On\\sSunday,”trim(strg))
}

Both functions above also utilize the trim function which #
removes any whitespace from the start and end of a string

trim <- function (x) gsub(“^\\s+|\\s+$,” “,” x)

F. FIND DATE FUNCTION

find.date <- function(strg){str_extract(strg,pattern =
“\\d{1,2}\\s\\b(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)
?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?
|(Nov|Dec)(?:ember)?)\\s+\\d{4}”)}

52

G. FIND MISC FUNCTION

This function finds all cases of text between the word “in” and
the next punctuation. However, dashes are removed first so the
regex does not terminate at a dash. It can accomodate more than
one instance of this occurence within an event
If the string found starts with the word “the,” “the” will be
removed.

find.misc <- function(test){
test <- rm_dashes(paste0 (test, .”“))
if (sum(grepl(“\\sin\\s,”test)) > 0){
misc <- gsub (“(.*?)\\<in\\> (.*)[[:punct:]](.*)?,” “\\2,”
test, ignore=T)
gimme <- regexpr (“\\<in\\>,” test, ignore=T)

if (sum(gimme>0) > 0){
test <- sub (“\\<in\\>,” “XX,” test, ignore=T)
gimme <- regexpr (“\\<in\\>,” test, ignore=T)
misc <- append(misc,gsub (“(.*?)\\<in\\> (.*)[[:punct:]]
(.*)?,” “\\2,” test[gimme > 0], ignore=T))
}
test <- sub (“\\<in\\>,” “XX,” test, ignore=T)
gimme <- regexpr (“\\<in\\>,” test, ignore=T) # reset
misc <- append(misc,gsub (“(.*?)\\<in\\> (.*)[[:punct:]]
(.*)?,” “\\2,” test[gimme > 0], ignore=T))
paste(gsub(‘.*the ‘, ‘‘,misc),collapse = ,” “)
}
else{
NA
}
}

53

H. HAMMING LOCATION SEARCH R SCRIPT

#!/usr/bin/Rscript

#PBS -l procs=300
#PBS -l pmem=1GB
#PBS -l walltime=23:00:00

load(“hammingdfs.RData”)

require(parallel)
find.loc <- function (i, places = unlisted_df[,1], text =
df3$text2) {
patt <- paste0 (“\\b,” places[i], “\\b”)
hit <- grep (patt, text,ignore.case = TRUE)
if (length (hit) == 0)
return (c(0, 0))
return (c(hit[1], length(hit))) #returns first hit and total
number of hits
}
cat(date())
ptm = proc.time()
Try with entire unlisted_df alternate names column
search_all <- do.call(rbind, mclapply(seq(1:nrow(unlisted_df)),
function(x) find.loc(x)))

time_len = proc.time() - ptm
cat(time_len)
cat(date())

save(search_all,time_len, file=“search_results.RData”)

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

LIST OF REFERENCES

Bates D, Maechler M (2015) Matrix: Sparse and dense matrix classes and methods. R
package version 1.2-3. http://CRAN.R-project.org/package=Matrix.

Bunzel C (2015) From paper state to caliphate: The ideology of the Islamic State.
Analysis Paper, 19:32-34.

Burnham G, Lafta R, Doocy S, Roberts L (2006) Mortality after the 2003 invasion of
Iraq: A cross-sectional cluster sample survey. The Lancet, 368(9545): 1421–1428.

Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2016) Shiny: Web application
framework for R. R package version 0.13.2. https://CRAN.R-
project.org/package=shiny.

Cheng J, Xie Y (2016) Leaflet: Create interactive web maps with the JavaScript “Leaflet”
Library. R package version 1.0.1. https://CRAN.R-project.org/package=leaflet.

Combating Terrorism Center (CTC) (2006) Harmony Program. Accessed January 5,
2016, https://www.ctc.usma.edu/programs-resources/harmony-program.

Faraway JJ (2006) Extending the Linear Model with R Generalized Linear, Mixed Effects
and Nonparametric Regression Models (Taylor & Francis Group, Boca Raton,
FL).

Feinerer I, Hornik K (2015) Text mining package “tm,” Version 0.6-2. (Jul 3)
https://cran.r-project.org/web/packages/tm/tm.pdf.

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

GeoNames Geographical Database. Iraq(IQ) locations. Accessed May 1, 2016,
http://download.geonames.org/export/dump/.

Glyph & Cog, LLC. (2014) Xpdf, Open source viewer for PDF file. Accessed January
17, 2016, http://www.foolabs.com/xpdf/.

Global Terrorism Database (GTD) Overview of the GTD. Accessed January 17, 2016,
http://www.start-dev.umd.edu/gtd/.

Hanin Network Forums (2014) Iraq: ISIL claims 302 attacks on Iraqi forces in Al-Anbar
from 2 to 30 January. Retrieved on February 3, 2016,
https://www.opensource.gov.

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd ed. (Springer New York Inc., New York).

56

Hornik K, Buchta C, Zeileis A (2009) Open-source machine learning: R meets weka.
Computational Statistics, 24(2), 225–232.

Iraq Body Count (IBC) How Accurate Is IBC? Accessed April 5, 2016,
http://www.iraqbodycount.org/analysis/beyond/state-of-knowledge/7.

Jensen, M (2013) Discussion Point: The Benefits and Drawbacks of Methodological
Advancements in Data Collection and Coding: Insights from the Global Terrorism
Database (GTD). Retrieved on February 5, 2016, http://www.start-
dev.umd.edu/start/announcements/announcement.asp?id=622.

Kaplan F (2006) Number Crunching. Taking another look at the Lancet’s Iraq study Slate
(October 20), http://www.slate.com/articles/news_and_politics/war_stories/
2006/10/number_crunching.html

Kumar S (2014) Docx to Text convertor. Retrieved from http://docx2txt.sourceforge.net/.

LaFree G, Dugan L (2007) Introducing the Global Terrorism Database, Terrorism and
Political Violence, 19:2, 181–204.

Laub Z, Masters J (2013) “The Islamic State” Council on Foreign Relations. Accessed
March 18, 2016, http://www.cfr.org/iraq/islamic-state/p14811.

Moore SE (2006) 655,000 War Dead? A bogus study on Iraq casualties. Wall Street
Journal (October 19), http://www.opinionjournal.com/editorial/feature.html?id=
110009108.

Pape R, Ruby K, Bauer V, Jenkins G (2014) How to fix the flaws in the Global Terrorism
Database and why it matters. The Washington Post (Aug 11),
https://www.washingtonpost.com/news/monkey-cage/wp/2014/08/11/how-to-fix-
the-flaws-in-the-global-terrorism-database-and-why-it-matters/.

Porter, M (1980) An algorithm for suffix stripping, Program, 14(3):130-137.

R Core Team (2015) R: A language and environment for statistical computing [Computer
software]. Vienna, Austria: R Foundation for Statistical Computing.
http://www.R-project.org.

Sloboda J (2006) On Iraq Body Count: A presentation by IBC cofounder John Sloboda at
a working group meeting on methodologies used by researchers to estimate
numbers of armed conflict deaths (Feb 17).

SMART information retrieval system (2004) English stopwords (Aug 31)
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-
list/english.stop.

57

Spagat, M (2010) Ethical and data-integrity problems in the second lancet survey of
mortality in iraq. Defence and Peace Economics. 21(1): 1–41.

Van Os A (2008) Antiword: A free MS Word document reader. Retrieved March 18,
http://www.winfield.demon.nl/.

Viola P, Jones MJ (2004) Robust real-time face detection. International Journal of
Computer Vision. 57(2): 137–154.

Weiss SM, Indurkhya N, Zhang T (2010) Fundamentals of Predictive Text Mining
(Springer New York Inc., New York).

Whiteside C (2014) The smiling scented men: The political worldview of the Islamic
State of Iraq, 2003–2013 (December) Doctoral dissertation, Washington State
University.

Whiteside C (2016) Islamic State of Iraq dissertation database information provided via
personal communication with author on, February 16. Monterey, California.

Wickham H (2015). stringr: simple, consistent wrappers for common string operations. R
package version 1.0.0. https://CRAN.R-project.org/package=stringr.

Winter C (2015) Documenting the Virtual “Caliphate” (Quilliam, London).

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

